Характеризацiйнi теореми для B-q-бiномiального i q-пуассонiвского розподiлiв

Автор(и)

  • Imed Bouzida College of education Al Ain university Abu Dhabi Campus, P.O.Box: 112612, Abu Dhabi, UAE

DOI:

https://doi.org/10.15407/mag18.02.182

Ключові слова:

q-аналiз, q-оператор додавання, характеризацiйна теорема

Анотація

У цiй роботi заново перевизначено i заново введено в компактнiй формi q-бiномiальний i q-гiпергеометричний розподiли. Цi перевизначенi розподiли названо B-q-бiномiальним i B-q-гiпергеометричним. Крiм того, узагальнення добре вiдомих характерiзацiй Патiла i Сешадрi наведено в q-аналiзi. Характеризацiї B-q-бiномiального i B-q-гiпергеометричного розподiлiв зображено з використанням умовного q-розподiлу. Наведено необхiднi i достатнi умови, якi визначають q-пуасонiвський розподiл.

Mathematical Subject Classification 2010: 62E10, 62H05, 60D05

Посилання

I. Boutouria, I. Bouzida, and A. Masmoudi, On Characterizing the Gamma and the Beta q-distributions, Bull. Korean Math. Soc. 55 (2018), 1563-1575.

I. Boutouria, Characterization of the Wishart distribution on homogeneous cones in the Bobecka and Wesolowski way, Comm. Statist. Theory Methods 38 (2009), 2552-2566. https://doi.org/10.1080/03610920802578604

I. Boutouria, Characterization of the Wishart distributions on homogeneous cones, C. R. Math. Acad. Sci. Paris, 341 (2005), 43-48. https://doi.org/10.1016/j.crma.2005.05.022

Ch.A. Charalambides, Discrete q-distributions on Bernoulli trials with a geometrically varying success probability, J. Statist. Plann. Inference 140 (2010), 2355-2383. https://doi.org/10.1016/j.jspi.2010.03.024

K.S. Chung, W.S. Chung, S.T. Nam, and H.J. Kang, New q-derivative and q-logarithm, International Journal of Theoretical Physics, 33 (1994), 2019-2029. https://doi.org/10.1007/BF00675167

R. Díaz, C. Ortiz, and E. Pariguan, On the k-gamma q-distribution. Centr. Eur. J. Math. 8 (2010), 448-458. https://doi.org/10.2478/s11533-010-0029-0

R. Díaz and E. Pariguan, On the Gaussian q-distribution. J. Math. Anal. Appl. 358 (2009), 1-9. https://doi.org/10.1016/j.jmaa.2009.04.046

R. Díaz and E. Pariguan, An example of Feynman-Jackson integral. J. of Phys. A Math. Theor. 402009, 1265-1272. https://doi.org/10.1088/1751-8113/40/6/005

B. Imed, M. Afif, and Z. Mouna, Estimation parameters for the Binomial q-distribution, Comm. Statist. Theory Methods 50 (2021), 5101-5113. https://doi.org/10.1080/03610926.2020.1725825

B. Imen, B. Imed, and M. Afif, On Characterizing the Exponential q-Distribution, Bull. Malays. Math. Sci. Soc. 3 (2018), 3303-3322. https://doi.org/10.1007/s40840-018-0670-5

F.H. Jackson, On a q-functions and a certain difference operator, Trans Royal Soc. Edinburgh 46 (1909), 253-281. https://doi.org/10.1017/S0080456800002751

A.B. Kupershmidt, q-Probability: I. Basic discrete distributions. J. Nonlinear Math. Phys. 7 (2000), 73-93. https://doi.org/10.2991/jnmp.2000.7.1.6

H. Neidhardt, L. Wilhelm, and V. A. Zagrebnov, A new model of quantum dot light emitting-absorbing devices, J. Math. Phys. Anal. Geom. 10 (2014), 350-385. https://doi.org/10.15407/mag10.03.350

G.P. Patil and V. Seshadri, Characterization theorems for some univariate probability distributions J. Roy. Statist. Soc. Ser. B. 26 (1964), 286-292. https://doi.org/10.1111/j.2517-6161.1964.tb00561.x

S. Shu, A.Y. Han, Characterization of hyperbolic cylinders in a Lorentzian space form, J. Math. Phys. Anal. Geom. 8 (2012), 79-89.

S. Sinel'shchikov, Generic symmetries of the Laurent extension of quantum plane, J. Math. Phys. Anal. Geom. 11 (2015), 333-358. https://doi.org/10.15407/mag11.04.333

Downloads

Опубліковано

2022-08-20

Як цитувати

(1)
Bouzida, I. . Характеризацiйнi теореми для B-Q-бiномiального I Q-пуассонiвского розподiлiв. J. Math. Phys. Anal. Geom. 2022, 18, 182-193.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.