Uniform Estimate of Potentials by Reflection Coefficients and its Application to KdV Flow

Автор(и)

  • Shinichi Kotani Osaka University, 2-12-2 Yurinokidai Sanda 669-1324, Japan
    Department of Mathematics, Nanjing University, Nanjing 210093, China
  • Jinhui Li School of Mathematics and Statistics, Fuyang Normal University, Fuyang 236041, China

DOI:

https://doi.org/10.15407/mag19.01.150

Анотація

Оцiнено потенцiали одновимiрних операторiв Шредiнгера через моменти коефiцiєнтiв вiдбиття. Оскiльки коефiцiєнти вiдбиття є iнварiантними вiдносно потоку Кортевега–де Фрiза, оцiнки надають iнформацiю про певну передкомпактнiсть розв’язкiв рiвняння Кортевега–де Фрiза, починаючи з початкових значень, якi мають скiнченнi моменти коефiцiєнтiв вiдбиття.

Mathematical Subject Classification 2020: 34A55, 34B20, 35Q53

Ключові слова:

оператор Шредiнгера, коефiцiєнт вiдвиття, рiвняння Кортевега–де Фрiза

Посилання

I. Binder, D. Damanik, M. Goldstein, and M. Lukic, Almost periodicity in time of solutions of the KdV equation, Duke Math. J. 167 (2018), 2633--2678. https://doi.org/10.1215/00127094-2018-0015

E.I. Dinaburg and Y.G. Sinai, The one-dimensional Schrödinger equation with a quasiperiodic potential, Funct. Anal. Its Appl. 9 (1975), 279--289. https://doi.org/10.1007/BF01075873

D. Damanik and M. Goldstein, On the existence and uniqueness of global solutions of the KdV equation with quasiperiodic initial data, J. Amer. Math. Soc. 29 (2016), 825--856. https://doi.org/10.1090/jams/837

A.A. Danielya and B.M. Levitan, On the asymptotic behavior of the Weyl-Titchmarsh $m$-function, Math. USSR Izv. 36 (1991), 487--496. https://doi.org/10.1070/IM1991v036n03ABEH002031

I.E. Egorova, The Cauchy problem for the KdV equation with almost periodic initial data whose spectrum is nowhere dense, Adv. Soviet Math. 19 (1994), 181--208. https://doi.org/10.1090/advsov/019/07

L.H. Eliasson, Floquet solutions for the 1 dimensional quasi-periodic Schrödinger equation, Commun. Math. Phys. 146 (1992), 447 C482. https://doi.org/10.1007/BF02097013

B. Eichinger, T. VandenBoom, and P. Yuditskii, KdV hierarchy via Abelian coverings and operator identities, Trans. Amer. Math. Soc. Ser. B 6 (2019), 1--44. https://doi.org/10.1090/btran/30

S. Grudsky and A. Rybkin, Soliton theory and Hankel operators, SIAM J. Math. Anal. 47 (2015), 2283--2323. https://doi.org/10.1137/151004926

C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, A method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095--1097. https://doi.org/10.1103/PhysRevLett.19.1095

F. Gesztesy and H. Holden, Soliton Equations and Their Algebro-Geometric Solutions, I: $(1 + 1)$-Dimensional Continuous Models, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2003. https://doi.org/10.1017/CBO9780511546723

F. Gesztesy and B. Simon, The xi function, Acta Math. 176 (1996), 49--71. https://doi.org/10.1007/BF02547335

F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, I. The case of an a.c. component in the spectrum, Helv. Phys. Acta 70 (1997), 66--71.

S. Kotani, Ljapounov indices determine absolutely continuous spectra of stationary random Schrödinger operators, Stochastic Analysis (Katata/Kyoto, 1982), 225--247, North-Holland Math. Library, 32, North-Holland, Amsterdam, 1984. https://doi.org/10.1016/S0924-6509(08)70395-7

S. Kotani, Construction of KdV flow, I. Tau function via Weyl function, J. Math. Phys. Anal. Geom. 14 (2018), 297--335. https://doi.org/10.15407/mag14.03.297

S. Kotani, Construction of KdV flow, to appear in Peking Math. Journ., https://arxiv.org/abs/2107.05428

P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467--490. https://doi.org/10.1002/cpa.3160210503

D.S. Lundina, Compactness of the set of reflectionless potentials, Teor. Funkt. Funkt. Anal. Prilozh. 44 (1985), 55--66 (Russian). Available from: url{http://dspace.univer.kharkov.ua/bitstream/123456789/1776/4/Lundina.pdf}

M. Leguil, J. You, Z. Zhao, and Q. Zhou, Asymptotics ofspectral gaps of quasi-periodic Schrödinger operators, preprint, https://arxiv.org/abs/1712.04700

V.A. Marchenko, The Cauchy problem for the KdV equation with non-decreasing initial data, Springer series in Nonlinear Dynamics, What is Integrability? (Ed. V.E.~Zakharov), 1990, 273--318. https://doi.org/10.1007/978-3-642-88703-1_7

C. Remling, Generalized reflection coefficients, Comm. Math. Phys. 337 (2015), 1011--1026. https://doi.org/10.1007/s00220-015-2341-9

A. Rybkin, On the evolution of a reflection coefficient under the Korteweg-de Vries flow, J. Math. Phys. 49 (2008). https://doi.org/10.1063/1.2951897

A. Rybkin, The Hirota τ-function and well-posedness of the KdV equation with an arbitrary step like initial profile decaying on the right half line, Nonlinearity 24 (2011), 2953--2990. https://doi.org/10.1088/0951-7715/24/10/015

B. Simon, A new approach to inverse spectral theory, I. Fundamental formalism, Ann. of Math. 150 (1999), 1029--1057. https://doi.org/10.2307/121061

Downloads

Як цитувати

(1)
Kotani, S.; Li, J. Uniform Estimate of Potentials by Reflection Coefficients and its Application to KdV Flow. Журн. мат. фіз. анал. геом. 2023, 19, 150-171.

Завантаження

Дані завантаження ще не доступні.

Статті цього автора (авторів), які найбільше читають