Dressing for Fokker-Planck Equations: the Cases of $1+1$ and $1+\ell$ Dimensions
DOI:
https://doi.org/10.15407/mag19.02.503Анотація
Ми розглядаємо процедуру одягнення та явнi розв’язки скороченого скалярного рiвняння Фоккера–Планка у випадку розмiрностi $(1+1)$ i матричної системи Фоккера–Планка у випадку розмiрностi $(1+\ell)$. Для цього ми використовуємо наше узагальнене перетворення Беклунда–Дарбу (УПБД). Є лише декiлька праць щодо процедури одягнення для важливого рiвняння Фоккера–Планка i цi працi стосуються випадкiв розмiрностей $1+1$ та $1+2$.
Mathematical Subject Classification 2020: 35A30, 35Q84, 15A16
Ключові слова:
скорочене рiвняння Фоккера–Планка, матрична система Фоккера–Планка, процедура одягнення, перетворення Дарбу, матрична тотожнiсть, явний розв’язокПосилання
M. Bergvelt, M. Gekhtman, and A. Kasman, Spin Calogero particles and bispectral solutions of the matrix KP hierarchy, Math. Phys. Anal. Geom. 12 (2009), 181--200. https://doi.org/10.1007/s11040-009-9058-y
A. Boutet de Monvel and V.A. Marchenko, Generalization of the Darboux transform, Mat. Fiz. Anal. Geom. 1 (1994), 479--504.
J.L. Cieśliński, Algebraic construction of the Darboux matrix revisited, J. Phys. A 42 (2009), 404003. https://doi.org/10.1088/1751-8113/42/40/404003
M.M. Crum, Associated Sturm-Liouville systems, Quart. J. Math. Oxford(2) 6 (1955), 121--127. https://doi.org/10.1093/qmath/6.1.121
P.A. Deift, Applications of a commutation formula, Duke Math. J. 45 (1978), 267--310. https://doi.org/10.1215/S0012-7094-78-04516-7
C.R. Doering and J.C. Gadoua, Resonant Activation over a Fluctuating Barrier, Phys. Rev. Lett. 69 (1992), 2318--2321. https://doi.org/10.1103/PhysRevLett.69.2318
F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.
F. Gesztesy, A complete spectral characterization of the double commutation method, J. Funct. Anal. 117 (1993), 401--446. https://doi.org/10.1006/jfan.1993.1132
F. Gesztesy and G. Teschl, On the double commutation method, Proc. Amer. Math. Soc. 124 (1996), 1831--1840. https://doi.org/10.1090/S0002-9939-96-03299-6
F. Gesztesy and H. Holden, Soliton equations and their algebro-geometric solutions, Cambridge University Press, Cambridge, 2003. https://doi.org/10.1017/CBO9780511546723
I. Gohberg, M.A. Kaashoek, and A.L. Sakhnovich, Sturm-Liouville systems with rational Weyl functions: explicit formulas and applications, Integral Equations Operator Theory 30 (1998), 338--377. https://doi.org/10.1007/BF01195588
C.H. Gu, H. Hu, and Z. Zhou, Darboux Transformations in Integrable Systems, Springer-Verlag, Dordrecht, 2005.
Choon-Lin Ho, Time-dependent Darboux transformation and supersymmetric hierarchy of Fokker-Planck equations, Chinese J. Phys. 77 (2022), 1903--1911. https://doi.org/10.1016/j.cjph.2021.12.028
M.A. Kaashoek and A.L. Sakhnovich, Discrete skew self-adjoint canonical system and the isotropic Heisenberg magnet model, J. Funct. Anal. 228 (2005), 207--233. https://doi.org/10.1016/j.jfa.2004.10.022
A. Kasman and M. Gekhtman, Solitons and almost-intertwining matrices, J. Math. Phys. 42 (2001), 3540--3551 . https://doi.org/10.1063/1.1379313
A. Kostenko, A.L. Sakhnovich, and G. Teschl, Commutation methods for Schrödinger operators with strongly singular potentials, Math. Nachr. 285 (2012), 392--410. https://doi.org/10.1002/mana.201000108
S.D. Koval, A. Bihlo, and R.O. Popovych, Extended symmetry analysis of remarkable $(1+2)$-dimensional Fokke-Planck equation, https://doi.org/10.1017/S0956792523000074
D.Sh. Lundina and V.A. Marchenko, Limits of multisoliton solutions of the nonlinear Schrödinger operator, Dopov. Nats. Akad. Nauk Ukrainy No. 8 (1992), 21--24 (Russian).
V.A. Marchenko, Nonlinear Equations and Operator Algebras, Reidel Publishing Co., Dordrecht, 1988. https://doi.org/10.1007/978-94-009-2887-9
V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin, 1991. https://doi.org/10.1007/978-3-662-00922-2
T. Novotny and P. Chvosta, Resonant activation phenomenon for non-Markovian potential-fluctuation processes, Phys. Rev. E 63 (2000), 012102. https://doi.org/10.1103/PhysRevE.63.012102
C. Rogers, Fokker-Planck equations chain-reducible to canonical form via Bäcklund transformations, Phys. Lett. A 99 (1983), No. 4, 136--142. https://doi.org/10.1016/0375-9601(83)90961-1
H.C. Rosu, Short Survey of Darboux Transformations, preprint, https://arxiv.org/abs/quant-ph/9809056.
A.L. Sakhnovich, Dressing procedure for solutions of nonlinear equations and the method of operator identities, Inverse Problems 10 (1994), 699--710. https://doi.org/10.1088/0266-5611/10/3/013
A.L. Sakhnovich, Generalized Bäcklund-Darboux transformation: spectral properties and nonlinear equations, J. Math. Anal. Appl. 262 (2001), 274--306. https://doi.org/10.1006/jmaa.2001.7577
A.L. Sakhnovich, Dynamical canonical systems and their explicit solutions, Discrete Contin. Dyn. Syst. 37 (2017), 1679--1689. https://doi.org/10.3934/dcds.2017069
A.L. Sakhnovich, Hamiltonian systems and Sturm-Liouville equations: Darboux transformation and applications, Integral Equations Operator Theory 88 (2017), 535--557. https://doi.org/10.1007/s00020-017-2385-7
A.L. Sakhnovich, Explicit solutions of matrix and dynamical Schrödinger equations and of KdV equation in terms of square roots of the generalised matrix eigenvalues, Oper. Matrices 16 (2022), 1175--1184. https://doi.org/10.7153/oam-2022-16-76
A.L. Sakhnovich, Dressing for generalised linear Hamiltonian systems depending rationally on the spectral parameter and some applications, Discrete Contin. Dyn. Syst. 43 (2023), 807--820. https://doi.org/10.3934/dcds.2022170
A.L. Sakhnovich, L.A. Sakhnovich, and I.Ya. Roitberg, Inverse Problems and Nonlinear Evolution Equations. Solutions, Darboux Matrices and Weyl-Titchmarsh Functions, De Gruyter, Berlin, 2013. https://doi.org/10.1515/9783110258615
L.A. Sakhnovich, On the factorization of the transfer matrix function, Sov. Math. Dokl. 17 (1976), 203--207.
L.A. Sakhnovich, Factorisation problems and operator identities, Russian Math. Surveys 41 (1986), 1--64. https://doi.org/10.1070/RM1986v041n01ABEH003200
L.A. Sakhnovich, Spectral Theory of Canonical Differential Systems, Method of Operator Identities, Birkhäuser-Verlag, Basel-Boston, 1999. https://doi.org/10.1007/978-3-0348-8713-7
A. Schulze-Halberg, Darboux transformations for $(1+2)$-dimensional Fokker-Planck equations with constant diffusion matrix, J. Math. Phys. 53 (2012), 103519.https://doi.org/10.1063/1.4759118
I.V. Verevkin, Euler-Darboux transformation for the Fokker-Planck equation, Theoret. and Math. Phys. 166 (2011), 58--65. https://doi.org/10.1007/s11232-011-0005-2
V.E. Zakharov and A.V. Mikhailov, On the integrability of classical spinor models in two-dimensional space-time, Comm. Math. Phys. 74 (1980), 21--40. https://doi.org/10.1007/BF01197576