Approximate Controllability Problems for the Heat Equation in a Half-Plane Controlled by the Dirichlet Boundary Condition with a Bounded Control
Анотація
У роботі досліджено проблеми наближеної керованості для керованої системи $w_t=\Delta w$, $w(0,x_2,t)=u(x_2,t)$, $x_1\in\mathbb{R}_+=(0,+\infty)$, $x_2\in\mathbb R$, $t\in(0,T)$, де $u$ є керуванням, що належить до деякої спеціальної підмножини $L^\infty(\mathbb{R}\times (0,T))\cap L^2(\mathbb{R}\times (0,T))$. Доведено, що кожен початковий стан, що належить $L^2(\mathbb{R}_+\times\mathbb{R})$, є наближено керованим за допомогою таких керувань у будь-який кінцевий стан, що належить $L^2(\mathbb{R}_+\times\mathbb{R})$. Побудовано числовий алгоритм розв'язання проблеми наближеної керованості для цієї системи. Результати проілюстровано прикладом.
Mathematical Subject Classification 2020: 93B05, 35K05, 35B30
Ключові слова:
рівняння теплопровідності, керованість, наближена керованість, півплощинаПосилання
J. Apraiz, Observability inequalities for parabolic equations over measurable sets and some applications related to the bang-bang property for control problems, Appl. Math. Nonlin. Sci. 2 (2017), No. 2, 543--558. https://doi.org/10.21042/AMNS.2017.2.00045
V. Barbu, Exact null internal controllability for the heat equation on unbounded convex domains, ESAIM Control Optim. Calc. Var. 20 (2014), 222--235. https://doi.org/10.1051/cocv/2013062
V.R. Cabanillas, S.B. De Menezes, and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optim. Theory Appl. 110 (2001), 245--264. https://doi.org/10.1023/A:1017515027783
P. Cannarsa, P. Martinez, and J. Vancostenoble, Null controllability of the heat equation in unbounded domains by a finite measure control region, ESAIM Control Optim. Calc. Var. 10 (2004), 381--408. https://doi.org/10.1051/cocv:2004010
L. Djomegne and C. Kenne, Hierarchical exact controllability of a parabolic equation with boundary controls, J. Math. Anal. Appl. 542 (2025), Paper No. 128799. https://doi.org/10.1016/j.jmaa.2024.128799
Y. Duan, L.Wang, and C. Zhang, Observability inequalities for the heat equation with bounded potentials on the whole space, SIAM J. Control Optim. 58 (2020), 1939--1960. https://doi.org/10.1137/19M1296847
O.Yu. Emanuilov, Boundary controllability of parabolic equations, Russian Math. Surveys 48 (1993), 192--194. https://doi.org/10.1070/RM1993v048n03ABEH001040
O.Yu. Emanuilov, Controllability of parabolic equations, Sb. Math. 186 (1995), 879--900. https://doi.org/10.1070/SM1995v186n06ABEH000047
L.V. Fardigola, On controllability problems for the wave equation on a half-plane, J. Math. Phys. Anal. Geom. 1 (2005,) 93--115.
L.V. Fardigola, Modified Sobolev spaces in controllability problems for the wave equation on a half-plane, J. Math. Phys. Anal. Geom. 11 (2015), 18--44. https://doi.org/10.15407/mag11.01.018
L.V. Fardigola, Transformation Operators and Influence Operators in Control Problems, Thesis (Dr. Hab.), Kharkiv, 2016 (Ukrainian).
L. Fardigola and K. Khalina, Reachability and controllability problems for the heat equation on a half-axis, J. Math. Phys. Anal. Geom. 15 (2019), 57--78. https://doi.org/10.15407/mag15.01.057
L. Fardigola and K. Khalina, Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition, Math. Control Relat. Fields 11 (2021), 211--236. https://doi.org/10.3934/mcrf.2020034
L. Fardigola and K. Khalina, Controllability problems for the heat equation in a half-plane controlled by the Dirichlet boundary condition with a point-wise control, J. Math. Phys. Anal. Geom. 18 (2022), 75--104. https://doi.org/10.15407/mag18.01.075
L. Fardigola and K. Khalina, Controllability problems for the heat equation with variable coefficients on a half-axis, ESAIM Control Optim. Calc. Var. 28 (2022), Paper No. 41. https://doi.org/10.1051/cocv/2022041
L. Fardigola and K. Khalina, Controllability problems for the heat equation with variable coefficients on a half-axis controlled by the Neumann boundary condition, J. Math. Phys. Anal. Geom. 19 (2023), 616--641. https://doi.org/10.15407/mag19.03.616
L. Fardigola and K. Khalina, Controllability problems for the heat equation in a half-plane controlled by the Neumann boundary condition with a point-wise control, J. Math. Phys. Anal. Geom. 21 (2025), 23--55. https://doi.org/10.15407/mag21.01.02
H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal. 43 (1971), 272--292. https://doi.org/10.1007/BF00250466
H.O. Fattorini and D.L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math. 32 (1974/75), 45--69. https://doi.org/10.1090/qam/510972
H.O. Fattorini, Boundary control of temperature distributions in a parallelepipedon, SIAM J. Control 13 (1975,) 1--13. https://doi.org/10.1137/0313001
A. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series 34, Research Institute of Mathematics, Global Analysis Research Center, Seoul National University, 1996.
S.G. Gindikin and L.R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992.
W. Gong and B. Li, Improved error estimates for semidiscrete finite element solutions of parabolic Dirichlet boundary control problems, IMA J. Numer. Anal. 40 (2020), 2898--2939. https://doi.org/10.1093/imanum/drz029
M. González-Burgos and L. de Teresa, Some results on controllability for linear and nonlinear heat equations in unbounded domains, Adv. Differential Equations 12 (2007), 1201--1240. https://doi.org/10.57262/ade/1355867413
Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables, (Eds. M. Abramowitz and I.A. Stegun), National Bureau of Standards, Applied Mathematics Series, 55, Washington, DC, 1972.
O.Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. RIMS, Kyoto Univ. 39 (2003), 227--274. https://doi.org/10.2977/prims/1145476103
G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations 20 (1995), 335--356. https://doi.org/10.1080/03605309508821097
J. Lohéac, E. Trélat, and E. Zuazua, Minimal controllability time for the heat equation under unilateral state or control constraints, Math. Models Methods Appl. Sci. 27 (2017), 1587--1644. https://doi.org/10.1142/S0218202517500270
S.B. De Menezes and V.R. Cabanillas, Null controllability for the semilinear heat equation in unbounded domains, Pesquimat 4 (2001), 35--54.
S. Micu, I. Roventa, and M. Tucsnak, Time optimal boundary controls for the heat equation, J. Funct. Anal. 263 (2012), 25--49. https://doi.org/10.1016/j.jfa.2012.04.009
S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc. 353 (2001), 1635--1659. https://doi.org/10.1090/S0002-9947-00-02665-9
S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space, Port. Math. (N.S.) 58 (2001), 1--24.
L. Miller, On the null-controllability of the heat equation in unbounded domains, Bull. Sci. Math. 129 (2005), 175--185. https://doi.org/10.1016/j.bulsci.2004.04.003
NIST Handbook of Mathematical Functions, (Eds. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark), National Institute of Standards and Technology, Cambridge University Press, 2010.
L.L.D. Njoukoue and G. Deugoue, Stackelberg control in an unbounded domain for a parabolic equation, J. Nonl. Evol. Equ. Appl. 5 (2021), 95--118.
D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Stud. Appl. Math. 52 (1973), 189--211. https://doi.org/10.1002/sapm1973523189
L. Schwartz, Théorie des Distributions, I, II, Hermann, Paris, 1950--1951.
M. Shubin, Invitation to Partial Differential Equations, Amer. Math. Soc., Providence, RI, 2020.
L. de Teresa, Approximate controllability of a semilinear heat equation in $ R^N$, SIAM J. Control Optim. 36 (1998), 2128--2147. https://doi.org/10.1137/S036012997322042
L. de Teresa and E. Zuazua, Approximate controllability of a semilinear heat equation in unbounded domains, Nonlinear Anal. 37 (1999), 1059--1090. https://doi.org/10.1016/S0362-546X(98)00085-6