Simple Closed Geodesics on Regular Tetrahedra in Spaces of Constant Curvature
DOI:
https://doi.org/10.15407/mag18.04.562Анотація
У даному оглядi представлено результати про поведiнку простих замкнених геодезичних на правильних тетраедрах у тривимiрних просторах постiйної кривини.
Mathematical Subject Classification 2010: 53C22, 52B10
Ключові слова:
замкненi геодезичнi, правильний тетраедр, простiр Лобачевського, сферичний простiрПосилання
A. Akopyan and A. Petrunin, Long geodesics on convex surfaces, Math. Intelligencer 40 (2018), 26--31. https://doi.org/10.1007/s00283-018-9795-5
A.D. Alexandrov, Convex Polyhedra, Gosudarstv. Izdat. Tekhn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian); Engl. transl.: Springer Berlin, Heidelberg, 2005.
A.D. Alexandrov, Intrinsic Geometry of Convex Surfaces, Gosudarstv. Izdat. Tekhn.-Teor. Lit., Moscow-Leningrad, 1948 (Russian); Engl. transl.: Chapman and Hall/CRC, NY, 2005.
W. Ballmann, Der Satz von Lusternik und Schnirelmann, Beiträge zur Differentialgeometrie, Heft 1, Bonner Math. Schriften, 102, Universität Bonn, Bonn, 1978, 1--25 (German).
V. Bangert, On the existence of closed geodesics on two-spheres, Internat. J. Math. 4 (1993), No. 1, 1--10. https://doi.org/10.1142/S0129167X93000029
G.D. Birkhoff, Dynamical Systems, Amer. Math. Soc., Providence, R.I., 1927. https://doi.org/10.1090/coll/009
A.A. Borisenko, A necessary and sufficient condition for the existence of simple closed geodesics on regular tetrahedra in spherical space, Sb. Math. 213 (2022), No. 2, 161--172. https://doi.org/10.1070/SM9576
A.A. Borisenko, The estimation of the length of a convex curve in two-dimensional Alexandrov space, J. Math. Phys. Anal. Geom. 16 (2020), No. 3, 221--227. https://doi.org/10.15407/mag16.03.221
A.A. Borisenko and D.D. Sukhorebska, Simple closed geodesics on regular tetrahedra in Lobachevsky space, Sb. Math. 211 (2020), No. 5, 617--642. https://doi.org/10.1070/SM9212
A.A. Borisenko and D.D. Sukhorebska, Simple closed geodesics on regular tetrahedra in spherical space, Sb. Math. 212 (2021), No. 8, 1040--1067. https://doi.org/10.1070/SM9433
S.E. Cohn-Vossen, Some Problems of Differential Geometry in the Large, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959 (Russian).
D. Davis, V. Dods, C. Traub, and J. Yang, Geodesics on the regular tetrahedron and the cube, Discrete Math. 340 (2017), No. 1, 3183--3196. https://doi.org/10.1016/j.disc.2016.07.004
V. Erlandsson and J. Souto, Mirzakhani's Curve Counting and Geodesic Currents, Progress in Mathematics, 345, Birkhäuser, Cham (Switzerland), 2022. https://doi.org/10.1007/978-3-031-08705-9
A.I. Fet, Variational problems on closed manifolds, Mat. Sb. (N.S.), 30 (1952), No.~2, 271--316 (Russian) Engl. transl.: Amer. Math. Soc. Transl. 90 (1953), 15--41.
J. Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms, Invent. Math. 108 (1992), 403--418. https://doi.org/10.1007/BF02100612
D. Fuchs, Geodesics on a regular dodecahedron, MPIM Preprint, Bonn, 91 (2009), 1-14. Available from: url{https://archive.mpim-bonn.mpg.de/id/eprint/802}
D. Fuchs, Geodesics on regular polyhedra with endpoints at the vertices, Arnold Math J. 2 (2016), 201--211. https://doi.org/10.1007/s40598-016-0040-z
D. Fuchs and E. Fuchs, Closed geodesics on regular polyhedra, Mosc. Math. J. 7 (2007), No. 2, 265--279. https://doi.org/10.17323/1609-4514-2007-7-2-265-279
G. Galperin, Convex polyhedra without simple closed geodesics, Regul. Chaotic Dyn. 8 (2003), No. 1, 45--58.
D. Gromoll and W. Meyer, Periodic geodesics on compact Riemannian manifolds, J. Differential Geom. 3 (1969), No. 3-4, 493--510. https://doi.org/10.4310/jdg/1214429070
M. Gromov, Three remarks on geodesic dynamics and fundamental group, Enseign. Math. 46 (2000), 391--402.
P. Gruber, A typical convex surface contains no closed geodesic, J. Reine Angew. Math. 416 (1991), 195--205. https://doi.org/10.1515/crll.1991.416.195
J. Hadamard, Les surfaces à courbures opposées et leurs lignes géodésiques, J. Math. Pures Appl. 4 (1898), No. 5, 27--74 (French).
G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, London, 1975.
H. Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppe, Math. Ann. 138 (1959), 1--26 (German). https://doi.org/10.1007/BF01369663
H. Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen II, Math. Ann. 143, 1961, 463--464 (German). https://doi.org/10.1007/BF01470758
J. Itoh, J. Rouyer, and C. Vîlcu, Moderate smoothness of most Alexandrov surfaces, Internat. J. Math. 26 (2015), No. 4, 1--13. https://doi.org/10.1142/S0129167X15400042
K.A. Lawson, J.L. Parish, C.M. Traub, and A.G. Weyhaupt, Coloring graphs to classify simple closed geodesics on convex deltahedra, Int. J. Pure Appl. Math. 89 (2013), No. 2, 123--139. https://doi.org/10.12732/ijpam.v89i2.1
L.A. Lyusternik and A.I. Fet, Variational problems on closed manifolds, Dokl. Akad. Nauk. SSSR 81 (1951), 17--18 (Russian).
L.A. Lyusternik and L.G. Shnirelman, Sur le problème de troix géodésique fermées sur les surfaces de genre 0, C. R. Acad. Sci. Paris 189 (1929), 269--271 (French).
L.A. Lyusternik and L.G. Shnirelman, Topological methods in variational problems and their application to the differential geometry of surfaces, Uspekhi Mat. Nauk 2 (1947), No. 1(17), 166--217 (Russian).
G.A. Margulis, Applications of ergodic theory to the investigation of manifolds of negative curvature, Funktsional. Anal. i Prilozhen. 3 (1969), No. 4, 89--90 (Russian) https://doi.org/10.1007/BF01076325 Engl. transl.: Funct. Anal. Appl. 3 (1969), 335--336. https://doi.org/10.1007/BF01076325
G. McShane and I. Rivin, Simple curves on hyperbolic tori, C. R. Math. Acad. Sci. Paris 320 (1995), No. 12, 1523--1528.
M. Mirzakhani, Growth of the number of simple closed geodesics on hyperbolic surfaces, Ann. of Math. 168 (2008), No. 1, 97--125. https://doi.org/10.4007/annals.2008.168.97
J. O'Rourke and C. Vîlcu, Simple closed quasigeodesics on tetrahedra, Information 13 (2022), 238. https://doi.org/10.3390/info13050238
A.V. Pogorelov, Extrinsic Geometry of Convex Surfaces, Nauka, Moscow, 1969 (Russian); Engl. transl.: Amer. Math. Soc., Providence, R.I., 1973. https://doi.org/10.1090/mmono/035
A.V. Pogorelov, One theorem about geodesic lines on a closed convex surface, Mat. Sb. 18 (1946), No. 1, 181--183 (Russian).
A.V. Pogorelov, Quasi-geodesic lines on a convex surface, Sb. Math., 25 (1949), No.~2, 275--306 (Russian).
H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, I, Gauthier-Viltars, Paris, 1892 (French).
H. Poincaré, Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905), 237--274 (French). https://doi.org/10.1090/S0002-9947-1905-1500710-4
V.Yu. Protasov, Closed geodesics on the surface of a simplex, Sb. Math. 198 (2007), No. 2, 243--260. https://doi.org/10.1070/SM2007v198n02ABEH003836
H.B. Rademacher, On the average indices of closed geodesics, J. Differential Geom. 29 (1989), No. 1, 65--83. https://doi.org/10.4310/jdg/1214442633
I. Rivin, Simple curves on surfaces, Geom. Dedicata 87 (2001), 345--360. https://doi.org/10.1023/A:1012010721583
I. Rivin, Simpler proof of Mirzakhani's simple curve asymptotics, Geom. Dedicata 114 (2005), 229--235. https://doi.org/10.1007/s10711-005-7153-1
J. Rouyer and C. Vîlcu, Simple closed geodesics on most Alexandrov surfaces, Adv. Math. 278 (2015), 103--120. https://doi.org/10.1016/j.aim.2015.04.003
Ya.G. Sinai, Asymptotic behavior of closed geodesics on compact manifolds with negative curvature, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), No. 6, 1275--1296 (Russian).
I.A. Taimanov, Closed extremals on two-dimensional manifolds, Russian Math. Surveys 47 (1992), 163--211. https://doi.org/10.1070/RM1992v047n02ABEH000880
V.A. Toponogov, Estimation of the length of a convex curve on a two-dimensional surface, Sibirsk. Mat. Zh. 4 (1963), No. 5, 1189--1183 (Russian).
V.A. Vaigant and O.Yu. Matukevich, Estimation of the length of a simple geodesic on a convex surface, Sibirsk. Mat. Zh. 42 (2001), No. 5, 833--845. https://doi.org/10.1023/A:1011951207751
W. Ziller, The free loop space of globally symmetric spaces, Invent. Math. 41 (1977), 1--22. https://doi.org/10.1007/BF01390161