On Conformal Metrics of Constant Positive Curvature in the Plane
DOI:
https://doi.org/10.15407/mag19.01.059Анотація
Доведено три теореми про розв’язки рiвняння $\Delta u+e^{2u}=0$ в площинi. Першi двi явно описують усi увiгнутi розв’язки. Третя теорема стверджує, що дiаметр площини з метрикою з лiнiйним елементом $e^{u}|dz|$ не менше нiж $4\pi/3$, за винятком двох явно описаних сiмей розв’язкiв $u$.
Mathematical Subject Classification 2020: 35B99, 35G20, 30D15
Ключові слова:
рiвняння Лiувiлля, додатна кривина, мероморфна функцiя, сферична похiднаПосилання
W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), No. 2, 355--373. https://doi.org/10.4171/RMI/176
A. Eremenko, Geometric theory of meromorphic functions, In the Tradition of Ahlfors-Bers, III. Contemp. Math., 355, Amer. Math. Soc., Providence, RI, 2004, 221--230. https://doi.org/10.1090/conm/355/06453
A. Eremenko, Singularities of inverse functions, preprint, https://arxiv.org/abs/2110.06134
A. Eremenko, Metrics of constant positive curvature with conic singularities. A survey, preprint, https://arxiv.org/abs/2103.13364
A. Eremenko, C. Gui, Q. Li, and L. Xu, Rigidity results on Liouville equation, preprint, https://arxiv.org/abs/2207.05587
A.A. Goldberg and I.V. Ostrovskii, Value distribution of meromorphic functions, Translations of Mathematical Monographs, 236. American Mathematical Society, Providence, RI, 2008.
C. Gui and Q. Li, Some geometric inequalities related to Liouville equation, preprint, https://arxiv.org/abs/2208.03612
W. K. Hayman, The local growth of power series: a survey of the Wiman--Valiron method, Canad. Math. Bull. 17 (1974), No. 3, 317--358. https://doi.org/10.4153/CMB-1974-064-0
M. Heins, Asymptotic spots of entire and meromorphic functions, Ann. of Math. (2) 66 (1957), No. 3, 430--439. https://doi.org/10.2307/1969900
E. Hille, Ordinary differential equations in the complex domain, Wiley, New York, 1976.
J.K. Langley, Proof of a conjecture of Hayman concerning $f$ and $f'' $, J. London Math. Soc. (2) 48 (1993), No. 3, 500--514. https://doi.org/10.1112/jlms/s2-48.3.500
J.K. Langley, The Schwarzian derivative and the Wiman--Valiron property, J. Anal. Math. 130 (2016), 71--89. https://doi.org/10.1007/s11854-016-0029-5
J.K. Langley, Bank-Laine functions, the Liouville transformation and the Eremenko--Lyubich class, J. Anal. Math. 141 (2020), 225--246 https://doi.org/10.1007/s11854-020-0115-6
C.-S. Lin, Mean field equations, hyperelliptic curves and modular forms, Proceedings of the International Congress of Mathematicians — Seoul 2014. Vol. III, Kyung Moon Sa, Seoul, 2014, 331--343.
J. Liouville, Sur le théorème de M. Gauss, concernant le produit de deux rayons de courbure principaux en chaque point d'une surface, Note IV in the book: G. Monge, Application de l'analyse a la géométrie, 5-éme édition, Paris, Bachelier, 1850, 583--600.
J. Liouville, Sur l'équation aux différences partielles $\frac{\partial^2 \log \lambda}{\partial u\partial v} \pm \frac{\lambda}{2 a^2} = 0$ , J. Math. Pures Appl. (1) 18 (1853), 71--72.
F. Minding, Wie sich entscheiden läßt, ob zwei gegebene krumme Flächen auf einander abwickelbar sind oder nicht; nebst Bemerkungen über die Flächen von unveränderlichem Krümmungsmaaße, J. Reine Angew. Math. 19 (1839), 370--387. https://doi.org/10.1515/crll.1839.19.370
G. Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954.