On the Spectrum of Rotating Viscous Relaxing Fluid

Автор(и)

  • D. Zakora Voronezh State University, 1 University Sq., Voronezh 394006, Russia

DOI:

https://doi.org/10.15407/mag12.04.338

Анотація

Сформульовано задачу про спектр в'язкої релаксуючої рiдини, яка повнiстю заповнює тверде тiло, що рiвномiрно обертається. Знайдено iстотний спектр задачi й доведено твердження про локалiзацiю та асимптотику спектру.

Mathematics Subject Classification: 45K05, 58C40, 76R99.

Ключові слова:

в'язка рідина, стислива рідина, істотний спектр, умова додатковості, асимптотика

Посилання

P.K. Pal and V.N. Maslennikova, Spectral Properties of Operators in a Problem on Normal Oscillations of a Compressible Fluid Filling Rotating Vessel. — Acad. Sci. USSR 281 (1985), No. 3, 529–534. (Russian)

G. Geymonat and E. Sanchez-Palencia, On the Vanishing Viscosity Limit for Acoustic Phenomena in a Bounded Region. — Archiv for Rat. Mech. and Anal. 75 (1981), 257–268.

V.V. Vlasov and D.A. Medvedev, Functional-Differentional Equations in Sobolev Spaces and Connected Questions on Spectral Theory. — Modern Math. Fundamental Concepts 30 (2008), 3–173. (Russian)

V.V. Vlasov, N.A. Rautian and A.S. Shamaev, Spectral Analysis and Well-Posed Solvability of Abstract Integro-Differential Equations Arising in Thermal Physics and Acoustics. — Modern Math. Fundamental Concepts 39 (2011), 36–65. (Russian)

D. Zakora, A Symmetric Model of Viscous Relaxing Fluid. An Evolution Problem. — J. Math. Phys., Anal., Geom. 8 (2012), No. 2, 190–206.

N.D. Kopachevsky, S.G. Krein and Ngo Zui Kan, Operator Methods in Linear Hydrodynamics. Evolution and Spectral Problems. Nauka, Moscow, 1989. (Russian)

T. Kato, Perturbation Theory for Linear Operators. Heidelberg-New York, 1980.

L.R. Volevich, Solvability of Boundary-Value Problems for General Elliptic Systems. — Math. Sb. 68(110) (1965), No. 3, 373–416. (Russian)

V.A. Solonnikov, On General Boundary-Value Problems for A. Douglis-L. Nirenberg Elliptic Systems. II — Trudy Math. V.A. Steklov Ins. (1966), 233–297. (Russian)

A.N. Kozhevnikov, Functional Methods of Mathematical Physics. Uchebnoe Posobie, MAI, Moscow, 1991. (Russian)

A. Kozhevnikov and T. Skubachevskaya, Some Applications of Pseudo-Differential Operators to Elasticity. — Hokkaido Mathematical Journal 26 (1997), 297–322. https://doi.org/10.14492/hokmj/1351257967

G. Grubb and G. Geymonat, The Essential Spectrum of Elliptic Systems of Mixed Order. — Math. Ann. 227 (1977), 247–276. https://doi.org/10.1007/BF01361859

A.S. Marcus, Introduction to Spectral Theory of Polinomial Operator Pencils. Shtiinca, Kishenev, 1986. (Russian)

A.S. Marcus and V.I. Matsaev, Theorem on Compare of Spectrums and Spectral Asymptotics for M.V. Keldysh’s Pencil. — Math. Sb. 123(165) (1984), No. 3, 391–406. (Russian)

M.Sh. Birman and M.Z. Solomjak, Asymptotics of Spectrum of Differential Equations. — Itogi Nauki i Tehniki VINITI. Seria Math. An. 14 (1977), 5–58. (Russian)

N.D. Kopachevsky and S.G. Krein, Operator Approach to Linear Problems of Hy-drodynamics. Vol. 2: Nonself-Adjoint Problems for Viscous Fluids. Birkh¨auser Ver-lag, Basel-Boston-Berlin, 2003. https://doi.org/10.1007/978-3-0348-8063-3

Downloads

Як цитувати

(1)
Zakora, D. On the Spectrum of Rotating Viscous Relaxing Fluid. Журн. мат. фіз. анал. геом. 2016, 12, 338-358.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.