The KPZ Equation and Moments of Random Matrices

Автор(и)

  • Vadim Gorin Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA,02139-4307, USA
    Institute for Information Transmission Problems of Russian Academy of Sciences, Bolshoy Karetny per. 19, build. 1, Moscow 127051, Russia
  • Sasha Sodin School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
    School of Mathematical Sciences, Tel Aviv University, Tel Aviv, 69978, Israel

DOI:

https://doi.org/10.15407/mag14.03.286

Анотація

Логарифм дiагонального матричного елемента високого ступеня випадкової матрицi збiгається до розв'язку Коле-Гопфа рiвняння Кардара-Парiсi-Жанга в сенсi одноточкових розташувань.

Mathematics Subject Classification: 60B20, 60H15.

Ключові слова:

рiвняння КПЖ, розв'язок Коле-Гопфа, процес Ейрi, випадкова матриця

Посилання

G. Amir, I. Corwin, and J. Quastel, Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions, Comm. Pure Appl. Math. 64 (2011), 466–537. https://doi.org/10.1002/cpa.20347

T. Alberts, K. Khanin, and J. Quastel, The continuum directed random polymer, J. Stat. Phys. 154 (2014), 305–326. https://doi.org/10.1007/s10955-013-0872-z

T. Alberts, K. Khanin, and J. Quastel, The intermediate disorder regime for directed polymers in dimension 1 + 1, Ann. Probab. 42 (2014), 1212–1256. https://doi.org/10.1214/13-AOP858

G. Barraquand, A. Borodin, I. Corwin, and M. Wheeler, Stochastic six-vertex model in a half-quadrant and half-line open ASEP, preprint, arXiv: 1704.04309, to appear in Duke Math. J.

A. Borodin and V. Gorin, Moments match between the KPZ equation and the Airy point process, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 102, 7 pp.

P. Bourgade and H.-T. Yau, The eigenvector moment flow and local quantum unique ergodicity, Commun. Math. Phys. 350 (2017), 231–278. https://doi.org/10.1007/s00220-016-2627-6

P. Calabrese, P. Le Doussal, and A. Rosso, Free-energy distribution of the directed polymer at high temperature, Euro. Phys. Lett. 90 (2010), No. 2, 20002.

I. Corwin, The Kardar–Parisi–Zhang equation and universality class, Random Matr. Theory Appl. 1 (2012), No. 1, 1130001, arXiv: 1106.1596.

P. Diaconis and D. Freedman, A dozen de Finetti-style results in search of a theory, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), No. 2, suppl., 397–423.

P. Diaconis, E. Morris, and S. Lauritzen, Finite De Finetti theorems in linear models and multivariate analysis, Scandinavian Journal of Statistics 19 (1992), 289–315.

P.A. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lecture Notes in Mathematics, 3. New York University, Courant Institute of Mathematical Sciences, Amer. Math. Soc., New York, Providence, RI, 1999.

P. Deift and D. Gioev, Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices, Comm. Pure Appl. Math. 60 (2007), 867–910. https://doi.org/10.1002/cpa.20164

V. Dotsenko, Bethe ansatz derivation of the Tracy–Widom distribution for onedimensional directed polymers, Euro. Phys. Lett. 90 (2010), 20003. https://doi.org/10.1209/0295-5075/90/20003

I. Dumitriu and A. Edelman, Matrix models for beta ensembles, J. Math. Phys. 43 (2002), 5830–5847. https://doi.org/10.1063/1.1507823

P.J. Forrester, The spectral edge of random matrix ensembles, Nucl. Phys. B 402 (1994), 709–728. https://doi.org/10.1016/0550-3213(93)90126-A

P.J. Forrester, Log-gases and Random Matrices. Princeton University Press, Princeton, 2010.

V. Gorin and M. Shkolnikov, Stochastic Airy semigroup through tridiagonal matrices, Ann. Probab. 46 (2018), 2287–2344. https://doi.org/10.1214/17-AOP1229

P. Gonçalves and M. Jara, Nonlinear fluctuations of weakly asymmetric interacting particle systems, Arch. Rational Mech. Anal. 212 (2014), 597–644. https://doi.org/10.1007/s00205-013-0693-x

M. Gubinelli and N. Perkowski, KPZ Reloaded, Commun. Math. Phys. 349 (2017), 165–269, arXiv: 1508.03877.

M. Gubinelli and N. Perkowski, Energy solutions of KPZ are unique, J. Amer. Math. Soc. 31 (2018), 427–471, arXiv: 1508.07764.

M. Hairer, Solving the KPZ equation, Annals of Mathematics 178 (2013), 559–664. https://doi.org/10.4007/annals.2013.178.2.4

M. Kardar, G. Parisi and Y.C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889–892. https://doi.org/10.1103/PhysRevLett.56.889

A. Knowles and J. Yin, Eigenvector distribution of Wigner matrices, Probab. Theory Related Fields 155 (2013), 543–582. https://doi.org/10.1007/s00440-011-0407-y

J.O. Lee and J. Yin, A necessary and sufficient condition for edge universality of Wigner matrices, Duke Math. J. 163 (2014), 117–173. https://doi.org/10.1215/00127094-2414767

G. Olshanski and A. Vershik, Ergodic unitarily invariant measures on the space of infinite Hermitian matrices, In: Contemporary Mathematical Physics. F.A. Berezin’s memorial volume. Amer. Math. Transl. Ser. 2, 175 (Eds. R.L. Dobrushin et al.), 1996, 137–175, arXiv: math/9601215.

S. Parekh, The KPZ Limit of ASEP with Boundary, preprint, arXiv: 1711.05297, to appear in Commun. Math. Phys.

L. Pastur and M. Shcherbina, On the edge universality of the local eigenvalue statistics of matrix models, Mat. Fiz. Anal. Geom. 10 (2003), 335–365.

L. Pastur and M. Shcherbina, Eigenvalue distribution of large random matrices, Mathematical Surveys and Monographs, 171, Amer. Math. Soc., Providence, RI, 2011.

J.A. Ramı́rez, B. Rider, and B. Virág, Beta ensembles, stochastic Airy spectrum, and a diffusion, J. Amer. Math. Soc. 24 (2011), 919–944. https://doi.org/10.1090/S0894-0347-2011-00703-0

J. Quastel and H. Spohn, The one-dimensional KPZ equation and its universality, J. Stat. Phys. 160 (2015), 965–984. https://doi.org/10.1007/s10955-015-1250-9

T. Sasamoto and H. Spohn, One-dimensional Kardar–Parisi–Zhang equation: an exact solution and its universality, Phys. Rev. Lett. 104 (2010), 230602. https://doi.org/10.1103/PhysRevLett.104.230602

A. Soshnikov, Universality at the edge of the spectrum in Wigner random matrices, Commun. Math. Phys. 207 (1999), 697–733. https://doi.org/10.1007/s002200050743

T. Tao and V. Vu, Random matrices: universal properties of eigenvectors, Random Matrices Theory Appl. 1 (2012), No. 1, 1150001.

C. Tracy and H. Widom, Level-spacing distribution and Airy kernel, Commun. Math. Phys. 159 (1994), 151–174. https://doi.org/10.1007/BF02100489

C. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles, Commun. Math. Phys. 177 (1996), 727–754. https://doi.org/10.1007/BF02099545

Downloads

Як цитувати

(1)
Gorin, V.; Sodin, S. The KPZ Equation and Moments of Random Matrices. Журн. мат. фіз. анал. геом. 2019, 14, 286-296.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.