Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials

Автор(и)

  • I. Egorova B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv 61103, Ukraine
    Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Wien 1090, Austria
  • Z. Gladka B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv 61103, Ukraine
  • T. L. Lange Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Wien 1090, Austria
  • G. Teschl Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Wien 1090, Austria
    International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, Wien 1090, Austria

DOI:

https://doi.org/10.15407/mag11.02.123

Анотація

Вивчаються пряма та обернена задачі розсіювання для одновимірного рівняння Шредінгера із потенціалами типу сходинки. Встановлюються необхідні та достатні умови на дані розсіювання, що відповідають потенціалу із заданими гладкістю та швидкістю збігання до своїх асимптот. Отримані результати узагальнюють раніше відомі та є важливими для розв'язання задачі Коші для рівняння Кортевега-де Фріза методом оберненої задачі розсіювання.

Mathematics Subject Classification: 34L25, 81U40, 34B30, 34L40.

Ключові слова:

оператор Шредінгера, обернена задача розсіювання, потенціал типу сходинки

Посилання

M.J. Ablowitz and D.E. Baldwin, Interactions and Asymptotics of Dispersive Shock Waves Korteweg–de Vries Equation. — Phys. Lett. A 377 (2013), 555–559. https://doi.org/10.1016/j.physleta.2012.12.040

T. Aktosun, On the Schrödinger Equation with Steplike Potentials. — J. Math. Phys. 40 (1999), 5289–5305. https://doi.org/10.1063/1.533032

T. Aktosun and M. Klaus, Small Energy Asymptotics for the Schrödinger Equation on the Line. — Inverse Problems 17 (2001), 619–632. https://doi.org/10.1088/0266-5611/17/4/304

Dzh. Bazargan, The Direct and Inverse Scattering Problems on the Whole Axis for the One-Dimensional Schrödinger Equation with Steplike Potential. — Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 4 (2008), 7–11. (Russian)

R.F. Bikbaev, Structure of a Shock Wave in the Theory of the Korteweg–de Vries Equation. — Phys. Lett. A 141:5-6 (1989), 289–293.

R.F. Bikbaev and R.A. Sharipov, The Asymptotic Behavior as t → ∞ of the Solution of the Cauchy Problem for the Korteweg–de Vries Equation in a Class of Potentials with Finite-Gap Behavior as x → ±∞. — Theor. Math. Phys. 78:3 (1989), 244–252. https://doi.org/10.1007/BF01017661

A. Boutet de Monvel, I. Egorova, and G. Teschl, Inverse Scattering Theory for One-Dimensional Schrödinger Operators with Steplike Finite-Gap Potentials. — J. Analyse Math. 106 (2008), 271–316. https://doi.org/10.1007/s11854-008-0050-4

V.S. Buslaev and V.N. Fomin, An Inverse Scattering Problem for the OneDimensional Schrödinger Equation on the Entire Axis. — Vestnik Leningrad. Univ. 17 (1962), 56–64.

A. Cohen, Solutions of the Korteweg–de Vries Equation with Steplike Initial Profile. — Comm. Partial Differ. Eq. 9 (1984), 751–806.

A. Cohen and T. Kappeler, Scattering and Inverse Scattering for Steplike Potentials in the Schrödinger Equation. — Indiana Univ. Math. J. 34 (1985), 127–180. https://doi.org/10.1512/iumj.1985.34.34008

E.B. Davies and B. Simon, Scattering Theory for Systems with Different Spatial Asymptotics on the Left and Right. — Comm. Math. Phys. 63 (1978), 277–301. https://doi.org/10.1007/BF01196937

P. Deift and E. Trubowitz, Inverse Scattering on the Line. — Comm. Pure Appl. Math. 32 (1979), 121–251. https://doi.org/10.1002/cpa.3160320202

W. Eckhaus and A. Van Harten, The Inverse Scattering Transformation and Solitons: An Introduction. Math. Studies 50, North-Holland, Amsterdam, 1984.

I. Egorova, Z. Gladka, T.-L. Lange, and G. Teschl, Inverse Scattering Transform for the Korteweg–de Vries Equation with Steplike Initial Profile. — (in preparation).

I. Egorova, Z. Gladka, V. Kotlyarov, and G. Teschl, Long-Time Asymptotics for the Korteweg–de Vries Equation with Steplike Initial Data. — Nonlinearity 26 (2013), 1839–1864 . https://doi.org/10.1088/0951-7715/26/7/1839

I. Egorova, K. Grunert, and G. Teschl, On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data I. Schwartz-type Perturbations. — Nonlinearity 22 (2009), 1431–1457. https://doi.org/10.1088/0951-7715/22/6/009

I. Egorova, E. Kopylova, V. Marchenko, and G. Teschl, Dispersion Estimates for One-Dimensional Schrödinger and Klein–Gordon Equations Revisited. arXiv:1411.0021

I. Egorova and G. Teschl, A Paley–Wiener Theorem for Periodic Scattering with Applications to the Korteweg–de Vries Equation. — J. Math. Phys., Anal., Geom. 6 (2010), 21–33.

I. Egorova and G. Teschl, On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data II. Perturbations with Finite Moments. — J. d’Analyse Math. 115 (2011), 71–101. https://doi.org/10.1007/s11854-011-0024-9

L.D. Faddeev, Properties of the S-matrix of the One-Dimensional Schrödinger Equation. — Trudy Mat. Inst. Steklov 73 (1964), 314–336. (Russian)

N.E. Firsova, An Inverse Scattering Problem for the Perturbed Hill Operator. — Mat. Zametki 18 (1975), 831–843.

N.E. Firsova, A Direct and Inverse Scattering Problem for a One-Dimensional Perturbed Hill Operator. — Mat. Sborn. (N.S.) 130(172) (1986), 349–385.

N.E. Firsova, Riemann Surface of a Quasimomentum, and Scattering Theory for the Perturbed Hill Operator. — Mathematical Questions in the Theory of Wave Propagation. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 51 (1975), No. 7, 183–196.

N.E. Firsova, Solution of the Cauchy Problem for the Korteweg–de Vries Equation with Initial Data That are the Sum of a Periodic and a Rapidly Decreasing Function. — Math. USSR-Sb. 63 (1989), 257–265. https://doi.org/10.1070/SM1989v063n01ABEH003272

F. Gesztesy, R. Nowell, and W. Pötz, One-Dimensional Scattering Theory for Quantum Systems with Nontrivial Spatial Asymptotics. — Differ. Int. Eqs. 10 (1997), 521–546.

K. Grunert, The Transformation Operator for Schrödinger Operators on Almost Periodic Infinite-Gap Backgrounds. — Differ. Int. Eqs. 250 (2011), 3534–3558.

K. Grunert, Scattering Theory for Schrödinger Operators on Steplike, Almost Periodic Infinite-Gap Backgrounds. — Differ. Int. Eqs. 254 (2013), 2556–2586.

K. Grunert and G. Teschl, Long-time Asymptotics for the Korteweg–de Vries Equation Via Nonlinear Steepest Descent. — Math. Phys. Anal. Geom. 12 (2009), 287– 324. https://doi.org/10.1007/s11040-009-9062-2

I.M. Guseinov, Continuity of the Coefficient of Reflection of a One-Dimensional Schrödinger Equation. — Differ. Uravn. 21 (1985), 1993–1995. (Russian)

T. Kappeler, Solution of the Korteveg–de Vries Equation with Steplike Initial Data. — J. Differ. Eqs. 63 (1986), 306–331. https://doi.org/10.1016/0022-0396(86)90059-8

I. Kay and H.E. Moses, Reflectionless Transmission Through Dielectrics and Scattering Potentials. — J. Appl. Phys. 27 (1956), 1503–1508. https://doi.org/10.1063/1.1722296

E.Ya. Khruslov, Asymptotics of the Cauchy Problem Solution to the KdV Equation with Steplike Initial Data. — Matem. Sborn. 99 (1976), 261–281.

M. Klaus, Low-Energy Behaviour of the Scattering Matrix for the Schrödinger Equation on the Line. — Inverse Problems 4 (1988), 505–512. https://doi.org/10.1088/0266-5611/4/2/013

V.P. Kotlyarov and A.M. Minakov, Riemann–Hilbert Problem to the Modified Korteweg–de Vries Equation: Long-time Dynamics of the Steplike Initial Data. — J. Math. Phys. 51 (2010), 093506. https://doi.org/10.1063/1.3470505

J.A. Leach and D.J. Needham, The Targe-time Development of the Solution to an Initial-Value Problem for the Korteweg–de Vries Equation. I. Initial Data Has a Discontinuous Expansive Step. — Nonlinearity 21 (2008), 2391–2408. https://doi.org/10.1088/0951-7715/21/10/010

J.A. Leach and D.J. Needham, The Targe-time Development of the Solution to an Initial-Value Problem for the Korteweg–de Vries Equation. I. Initial Data Has a Discontinuous Compressive Step. — Mathematika 60 (2014), 391–414. https://doi.org/10.1112/S0025579313000284

B.M. Levitan, Inverse Sturm–Liouville Problems. Birkhäuser, Basel, 1987.

V.A. Marchenko, Inverse Sturm–Liouville Operators and Applications. Naukova Dumka, Kiev, 1977. (Russian). (Engl. tansl.: Birkhäuser, Basel, 1986; rev. ed., Amer. Math. Soc., Providence, 2011.)

A. Mikikits-Leitner and G. Teschl, Trace Formulas for Schrödinger Operators in Connection with Scattering Theory for Finite-Gap Backgrounds. Spectral Theory and Analysis, J. Janas (ed.) et al., 107–124, Oper. Theory Adv. Appl. 214, Birkhäuser, Basel, 2011.

A. Mikikits-Leitner and G. Teschl, Long-time Asymptotics of Perturbed Finite-Gap Korteweg–de Vries Solutions. — J. d’Analyse Math. 116 (2012), 163–218. https://doi.org/10.1007/s11854-012-0005-7

N.I. Muskhelishvili, Singular Integral Equations. P. Noordhoff Ltd., Groningen, 1953.

G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators. 2nd ed., Amer. Math. Soc., Rhode Island, 2014.

S. Venakides, Long Time Asymptotics of the Korteweg–de Vries Equation. — Trans. Amer. Math. Soc. 293 (1986), 411–419. https://doi.org/10.1090/S0002-9947-1986-0814929-0

V.E. Zaharov, S.V. Manakov, S.P. Novikov, and L.P. Pitaevskii, Theory of Solitons,The Method of the Inverse Problem. Nauka, Moscow, 1980. (Russian)

Downloads

Як цитувати

(1)
Egorova, I.; Gladka, Z.; Lange, T. L.; Teschl, G. Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials. Журн. мат. фіз. анал. геом. 2015, 11, 123-158.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.