On the Long-Time Asymptotics for the Korteweg-de Vries Equation with Steplike Initial Data Associated with Rarefaction Waves
DOI:
https://doi.org/10.15407/mag13.04.325Анотація
Ми обговорюємо асимптотичну поведiнку хвилi розрiдження для рiвняння КдФ в областi позаду заднього фронту хвилi. Перший та другий члени асимптотичного розвинення за часом для такого розв'язку було отримано без детального аналiзу в [1]. У данiй роботi ми уточнюємо формулу для другого члена, дослiджуючи вiдповiдну задачу параметриксу. Ми також обговорюємо вплив резонансу на асимптотичну поведiнку розв'язку.
Mathematics Subject Classification: 37K40, 35Q53, 35Q15.
Ключові слова:
рівняння КдФ, хвиля розрідження, задача параметріксаПосилання
K. Andreiev, I. Egorova, T.-L. Lange, and G. Teschl, Rarefaction Waves of the Korteweg–de Vries Equation via Nonlinear Steepest Descent, J. Differential Equations 261 (2016), 5371–5410. https://doi.org/10.1016/j.jde.2016.08.009
K. Andreiev and I. Egorova, Uniqueness of the Solution of the Riemann–Hilbert Problem for the Rarefaction Wave of the Korteweg–de Vries Equation, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (2017), No. 11, 3–9.
R. Beals, P. Deift, and C. Tomei, Direct and Inverse Scattering on the Line, Mathematical Surveys and Monographs, 28, Amer. Math. Soc., Providence, RI, 1988.
V.S. Buslaev and V.N. Fomin, An Inverse Scattering Problem for One-Dimentional Schrödinger Equation on the Entire Axis, Vestnik Leningrad. Univ. 17 (1962), 56–64 (Russian).
A. Cohen and T. Kappeler, Scattering and Inverse Scattering for Steplike Potentials in the Schrödinger Equation, Indiana Univ. Math. J. 34 (1985), 127–180. https://doi.org/10.1512/iumj.1985.34.34008
P. Deift and X. Zhou, A Steepest Descent Method for Oscillatory Riemann–Hilbert Problems, Ann. of Math. 137 (1993), 295–368. https://doi.org/10.2307/2946540
I. Egorova, Z. Gladka, T.-L. Lange, and G. Teschl, Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials, Zh. Mat. Fiz. Anal. Geom. 11 (2015), 123–158. https://doi.org/10.15407/mag11.02.123
I. Egorova and G. Teschl, On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data II. Perturbations with Finite Moments, J. Anal. Math. 115 (2011), 71–101. https://doi.org/10.1007/s11854-011-0024-9
K. Grunert and G. Teschl, Long-Time Asymptotics for the Korteweg–de Vries Equation via Nonlinear Steepest Descent, Math. Phys. Anal. Geom. 12 (2009), 287–324. https://doi.org/10.1007/s11040-009-9062-2
A.V. Gurevich and L.P. Pitaevskii, Decay of Initial Discontinuity in the Korteweg– de Vries Equation, JETP Lett. 17 (1973), No. 5, 193–195.
E.Ya. Khruslov, Asymptotics of the Solution of the Cauchy Problem for the Korteweg–de Vries Equation with Initial Data of Step Type, Mat. Sb. (N.S.) 99 (141) (1976), No. 2, 261–281 (Russian).
J.A. Leach and D.J. Needham, The Large-Time Development of the Solution to an Initial-Value Problem for the Korteweg–de Vries Equation: I. Initial Data Has a Discontinuous Expansive Step, Nonlinearity 21 (2008), 2391–2408. https://doi.org/10.1088/0951-7715/21/10/010
J. Lenells, The Nonlinear Steepest Descent Method for Riemann–Hilbert Problems of Low Regularity, arXiv:1501.05329, 35 pp.
G. Teschl, Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger Operators, Graduate Studies in Mathematics, 99, Amer. Math. Soc., Providence, RI, 2009.
V.E. Zaharov, S.V. Manakov, S.P. Novikov, and L.P. Pitaevskii, Theory of Solitons.The Method of the Inverse Problem, Nauka, Moscow, 1980 (Russian).